Tuesday, January 13, 2009

Impersonation - Identity theft

Impersonation isn't new. In 1556, a Frenchman was executed for impersonating Martin Guerre and this week hackers impersonated Barack Obama on Twitter. It's not even unique to humans: mockingbirds, Viceroy butterflies, and the mimic octopus all use impersonation as a survival strategy. For people, detecting impersonation is a hard problem for three reasons: we need to verify the identity of people we don't know, we interact with people through "narrow" communications channels like the telephone and Internet, and we want computerized systems to do the verification for us.

Traditional impersonation involves people fooling people. It's still done today: impersonating garbage men to collect tips, impersonating parking lot attendants to collect fees, or impersonating the French president to fool Sarah Palin. Impersonating people like policemen, security guards, and meter readers is a common criminal tactic.

These tricks work because we all regularly interact with people we don't know. No one could successfully impersonate your brother, your best friend, or your boss, because you know them intimately. But a policeman or a parking lot attendant? That's just someone with a badge or a uniform. But badges and ID cards only help if you know how to verify one. Do you know what a valid police ID looks like? Or how to tell a real telephone repairman's badge from a forged one?

Still, it's human nature to trust these credentials. We naturally trust uniforms, even though we know that anyone can wear one. When we visit a Web site, we use the professionalism of the page to judge whether or not it's really legitimate -- never mind that anyone can cut and paste graphics. Watch the next time someone other than law enforcement verifies your ID; most people barely look at it.

Impersonation is even easier over limited communications channels. On the telephone, how can you distinguish someone working at your credit card company from someone trying to steal your account details and login information? On e-mail, how can you distinguish someone from your company's tech support from a hacker trying to break into your network -- or the mayor of Paris from an impersonator? Once in a while someone frees himself from jail by faxing a forged release order to his warden. This is social engineering: impersonating someone convincingly enough to fool the victim.

These days, a lot of identity verification happens with computers. Computers are fast at computation but not very good at judgment, and can be tricked. So people can fool speed cameras by taping a fake license plate over the real one, fingerprint readers with a piece of tape, or automatic face scanners with -- and I'm not making this up -- a photograph of a face held in front of their own. Even the most bored policeman wouldn't fall for any of those tricks.

This is why identity theft is such a big problem today. So much authentication happens online, with only a small amount of information: user ID, password, birth date, Social Security number, and so on. Anyone who gets that information can impersonate you to a computer, which doesn't know any better.

Despite all of these problems, most authentication systems work most of the time. Even something as ridiculous as faxed signatures work, and can be legally binding. But no authentication system is perfect, and impersonation is always possible.

This lack of perfection is okay, though. Security is a trade-off, and any well-designed authentication system balances security with ease of use, customer acceptance, cost, and so on. More authentication isn't always better. Banks make this trade-off when they don't bother authenticating signatures on checks under amounts like $25,000; it's cheaper to deal with fraud after the fact. Web sites make this trade-off when they use simple passwords instead of something more secure, and merchants make this trade-off when they don't bother verifying your signature against your credit card. We make this trade-off when we accept police badges, Best Buy uniforms, and faxed signatures with only a cursory amount of verification.

Good authentication systems also balance false positives against false negatives. Impersonation is just one way these systems can fail; they can also fail to authenticate the real person. An ATM is better off allowing occasional fraud than preventing legitimate account holders access to their money. On the other hand, a false positive in a nuclear launch system is much more dangerous; better to not launch the missiles.

Decentralized authentication systems work better than centralized ones. Open your wallet, and you'll see a variety of physical tokens used to identify you to different people and organizations: your bank, your credit card company, the library, your health club, and your employer, as well as a catch-all driver's license used to identify you in a variety of circumstances. That assortment is actually more secure than a single centralized identity card: each system must be broken individually, and breaking one doesn't give the attacker access to everything. This is one of the reasons that centralized systems like REAL-ID make us less secure.

Finally, any good authentication system uses defense in depth. Since no authentication system is perfect, there need to be other security measures in place if authentication fails. That's why all of a corporation's assets and information isn't available to anyone who can bluff his way into the corporate offices. That is why credit card companies have expert systems analyzing suspicious spending patterns. And it's why identity theft won't be solved by making personal information harder to steal.

We can reduce the risk of impersonation, but it will always be with us; technology cannot "solve" it in any absolute sense. Like any security, the trick is to balance the trade-offs. Too little security, and criminals withdraw money from all our bank accounts. Too much security and when Barack Obama calls to congratulate you on your reelection, you won't believe it's him.

This essay originally appeared in The Wall Street Journal.

by 

No comments: